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submitted by ALİ İLKER SIĞIRCI in partial fulfillment of the requirements for the
degree of Master of Science in Computer Engineering Department, Middle East
Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
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ABSTRACT

ON THE USE OF LARGE LANGUAGE MODEL FOR VIRTUAL
SCREENING

SIĞIRCI, ALİ İLKER
M.S., Department of Computer Engineering

Supervisor: Prof. Dr. M. Volkan Atalay

September 2023, 79 pages

Due to the abundance of drug candidates, conducting in-lab experiments to find an

effective compound for a given target is a costly and time-consuming task in drug dis-

covery. This thesis aims to reduce the number of drug candidates during early drug

discovery by clustering the compounds. ChemBERTa, a Bidirectional Encoder Rep-

resentation from Transformers (BERT) model, is employed to extract the descriptors

for a compound. The compounds are clustered with respect to the learned features,

and several clustering algorithms, including the k-means clustering algorithm and

the Butina algorithm, are used. Finally, obtained clusters are evaluated by measures

such as the Silhouette Score and Homogeneity Score. Our empirical findings show

that using learned descriptors of ChemBERTa produces results that are comparable

with traditional and graph-based models, as shown by metrics of cluster accuracy and

computing runtime.

Keywords: drug-target interaction, compound descriptors, representation learning,

natural language processing, clustering
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ÖZ

DOĞAL DİL İŞLEME MODELİNİN SANAL TARAMADA KULLANIMI

SIĞIRCI, ALİ İLKER
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. M. Volkan Atalay

Eylül 2023 , 79 sayfa

İlaç adaylarının bolluğu nedeniyle, belirli bir hedef için etkili bir bileşiği bulmak için

laboratuvar deneyleri yapmak maliyetli ve zaman alıcı bir ilaç keşfi sürecidir. Bu tez,

erken ilaç keşfi sırasında bileşikleri kümeleyerek ilaç adaylarının sayısını azaltmayı

amaçlamaktadır. Bir bileşiğin tanımlayıcı özelliklerini çıkarmak için Yönlü Kodlayıcı

Temsili Dönüşümlerden (BERT) bir model olan ChemBERTa kullanılır. K-ortalama

kümeleme algoritması ve Butina algoritması gibi çeşitli kümeleme algoritmaları, bile-

şiklerin öğrenilmiş özelliklerine göre kümelendirilir. Son olarak, elde edilen kümeler

Siluet ve Homojenlik Skoru kriterlerine göre değerlendirilir. ChemBERTa modelinin

çıktılarının kullanımının, hesaplama süresi ve kümeleme doğruluğu gibi metriklerle

gösterilen geleneksel ve grafik tabanlı modellerle karşılaştırılabilir sonuçlar ürettiği,

deneylerimizde gösterilmiştir.

Anahtar Kelimeler: ilaç-hedef etkileşimi, bileşik öz vektörleri, temsil öğrenimi, doğal

dil işleme, kümeleme
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Discovery and development of novel drugs have the potential to treat a variety of

diseases, lengthen people’s lives, and improve their general well-being. Finding an

effective compound (drug) in the conventional experimental approach needs a lab-

oratory environment. Researchers must test each compound to find the appropriate

drug-target interaction pairs for the problem. Since there are too many candidate

compounds, the average time it takes to get an effective drug to market is around 15

years, and the total cost is around 2 billion dollars [2, 3]. The emergence of computa-

tional methods significantly reduced the challenges associated with time and financial

resources. Researchers can simulate and analyze compound-target interactions in a

virtual environment using these techniques. This process is called Virtual screen-

ing(VS), a computational method for drug discovery, identifying binding structures

of the small molecules to target proteins [4].

The public databases consist of chemical molecules and their target activities. Un-

fortunately, the target activities of many chemical molecules aren’t known, which

means they are many unlabeled drug-candidate compounds. Hence, the traditional

virtual screening approaches need significant computing power. To reduce the high

computing power requirement during the early stages of the drug discovery process,

the number of candidate compounds needs to be reduced to a reasonable number for

further processing. For this purpose, learned compound descriptors can be extracted

from a BERT model, and the compounds can be divided into different groups based

on these descriptors. Each clustered group is expected to consist of compounds with

similar target activities. Based on this intuition, target protein-based virtual screening

1



methods can be applied in the reduced number of each cluster.

Our motivation in the thesis is to find the effects of the learned compound descriptors

from the ChemBERTa model on the accuracy and speed of compound clustering.

1.2 Added Improvements

The main contribution of this thesis is to utilize the learned compound descriptors

of the BERT model in compound clustering and compare the results with traditional

descriptors. The subsequent enhancements are as follows.

• Unlike traditional compound descriptors like ECFP4, we use the learned com-

pound descriptors from the ChemBERTa-2 model [1] to cluster compounds

to screen them against a given target protein. The use of the latent space of

BERT models for compound clustering hasn’t been explored in the literature,

and our study shows that using the pre-trained ChemBERTa-2 model for com-

pound clustering gives competitive results compared to traditional descriptors

and graph-based models.

• We apply dimensionality reduction techniques to reduce the running time of

compound clustering.

• We compare traditional and learned compound descriptors for the prediction

of drug-target interaction. This comparison shows that learned ChemBERTa

model descriptors give competitive cluster accuracy compared to traditional

ones. The main advantage of using learned descriptors is their clustering speed

and, thus, reduced running time.

• Additionally, we demonstrate that the extraction of learned compound descrip-

tors is more efficient compared to graph-based descriptors and equally as effi-

cient as standard descriptor approaches in terms of computational efficiency.
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1.3 The Outline of the Thesis

This thesis consists of a total of 5 chapters. Chapter 2 gives necessary information

regarding compounds, proteins, Drug-Target Interaction, ChemBERTa model archi-

tecture, and clustering techniques. Chapter 3 describes the proposed method for ex-

tracting and clustering compound descriptors from the BERT model. Moreover, dif-

ferent approaches to get the learned compound descriptors are discussed. Chapter

4 explains the experiment setup, used datasets, and the results of the experiments.

Finally, Chapter 5 summarizes the thesis and discusses possible future work.
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CHAPTER 2

BACKGROUND INFORMATION AND RELATED WORK

2.1 Compounds and Proteins

A substance made up of two or more elements that are chemically linked together in

a certain proportion is referred to as a chemical compound. Chemical bonds, which

can be covalent or ionic, are used to hold these elements together, creating a distinct

complex molecule with certain features [5]. In the drug-target interaction context,

they are referred to as drugs.

Proteins are substantial, complex macromolecules essential for developing, maintain-

ing, and controlling every living organism. They are made up of peptide bonds that

connect chains of amino acid units, which are smaller building blocks. [5]. In the

drug-target interaction context, they are referred to as drug targets.

Drug-target interaction describes the chemical interactions and binding between a

drug molecule and its biological target, generally a protein such as an enzyme or

receptor. By interacting with a target, a compound can cause activation or inhibition

of the functionality of its target. Throughout the thesis, a compound and a target

are said to interact if the pChEMBL ≥ 7 (or XC50 ≤ 10µM) [6]. Furthermore, even

though the thesis uses the interaction term as a binary value of 0 or 1, there is also a

term called affinity. It represents a continuous binding strength value [7, 8].
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2.1.1 Computational Compound Representation

A key component of computational chemistry and drug discovery is compound (molec-

ular) representation. A compound representation transforms detailed chemical struc-

tures into numerical representations that computers can understand. For a variety

of computational tasks, such as determining protein binding, virtual screening, and

quantitative structure-activity relationship (QSAR), it is important that compounds

are accurately and effectively represented [9, 10, 11].

Figure 2.1 shows different human-readable representations of the Caffeine molecule,

where 2D and 3D representations are created using RDKit [12]. Graph-based 2D

and 3D representations use graph vertices as atoms and edges as atomic bonds [13].

With these attributes, a graph-based deep learning model can be trained, or a CNN

model can be trained by using the visual representation of the compounds [14, 15,

16, 17]. The Simplified Molecular Input Line Entry System (SMILES) [18] and

Self-Referencing Embedded Strings(SELFIES) [19] notations are in the form of one-

dimensional strings and best suited for Natural Language Processing(NLP) based

models like Bidirectional Encoder Representations from Transformers (BERT) [20,

1, 21, 22].

The latent space of the machine/deep learning models trained with the aforemen-

tioned notations is called learned compound descriptors [11]. In other words, the

compounds are represented by the model in the form of a vector, and it is called a

learned descriptor. There are also other approaches for compound descriptors that do

not use any machine/deep learning model, which are called traditional descriptors/fin-

gerprints. The most used traditional descriptor is ECFP4 [23], which represents the

compound with a 2048-sized binary vector.

6



CN1C=NC2=C1C(=O)N(C(=O)N2C)C [0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0…]

A. B.

D.C.

Figure 2.1: Different type of representations for Caffeine molecule. (A) Two-

dimensional graph notation where each vertex is an atom and each edge is a bond.

(B) A three-dimensional version of (A) where the molecule depth is also shown. (C)

SMILES notation. (D) 2048-sized binary ECFP4 descriptor (fingerprint).

2.2 ChemBERTa

The ChemBERTa is a Robustly Optimized BERT Pretraining Approach (RoBERTa) [24]

based Natural Language Processing (NLP) model. It is utilized for creating learned

compound descriptors, which is explained in detail in Section 3.1.1.

The transformer-based language model known as Bidirectional Encoder Representa-

tions from Transformers (BERT) is intended to comprehend natural language [25].

In order to understand complicated meanings, it learns contextualized word repre-

sentations by taking into account words on both sides. BERT understands sentence

relationships through Next Sentence Prediction (NSP) while being trained on a large

text corpus and uses Masked Language Modeling (MLM) to predict missing words.

By fine-tuning BERT with task-specific layers on labeled data, the knowledge that

has been pre-trained is applied to particular tasks. The multilayer structure of BERT’s

transformer architecture with self-attention captures linguistic abstraction and long-

range dependencies. BERT has revolutionized natural language processing bench-

marks by outperforming other systems in a variety of language-understanding tasks

despite the computational demands of the task.

RoBERTa [24] improves BERT by focusing on the pre-training strategy. A deeper

understanding of language is achieved by using larger batch sizes, more training data,
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and longer training times. Additionally, RoBERTa eliminates Next Sentence Predic-

tion (NSP) during pretraining in favor of just Masked Language Modeling (MLM).

This improves its capacity to recognize relationships between words and contextual

information. The performance of RoBERTa outperforms that of BERT, achieving

state-of-the-art performance on a variety of natural language understanding tasks.

In the context of ChemBERTa, it is a RoBERTa model that is utilized for the chem-

ical field. Its goal is to classify whether given compounds and their targets interact.

The model is trained on unlabeled 77 million SMILES compounds from PubChem

dataset. Despite being trained on a substantial dataset, the model’s categorization as

a large language model is insufficient due to its limited parameter size. The Masked

Language Modeling (MLM) task is performed by masking some part of the SMILES

input. Then, the model is trained to predict masked input. In their paper [21], Multi-

Task Regression (MTR) model is also trained. Around 200 compound features are ini-

tially extracted from SMILES notation using RDKit [12]. The model is then trained

to learn these features simultaneously. Although MTR approach is slower due to the

feature size, its performance outperforms that of the MLM. Pre-training pipeline of

the ChemBERTa model is visually presented in Figure2.2

ChemBERTa-2 model is the improved version of ChemBERTa that is pre-trained on

the larger dataset. Throughout the thesis, ChemBERTa and ChemBERTa-2 are used

interchangeably and hence, we always refer to the latest model, which is ChemBERTa-

2.

Figure 2.2: Visual representation of ChemBERTa pre-training approaches; MLM and

MTR (adapted from [1]).
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2.3 Dimensionality Reduction

Dimensionality reduction strategies are employed in order to address the difficulties

presented by datasets with a high number of dimensions. These techniques help in

the simplification and conversion of complex datasets into representations with fewer

dimensions. The process of reduction improves computational efficiency, enables 2D

visualization of the data, and prevents the curse of dimensionality problems.

In terms of computational efficiency, it is observed that more dimensional data re-

quires a greater amount of memory and space. By employing dimensionality reduc-

tion methodologies, one can efficiently reduce memory and space consumption. The

curse of dimensionality is characterized by the increased sparsity of high-dimensional

data [26]. The presence of sparsity in the data results in increased computational com-

plexity during the computation of distance metrics and extended durations for execu-

tion. Furthermore, in the context of high-dimensional data, it can be observed that all

data points show a tendency to have similar distances from one another. The compu-

tation of the distance matrix becomes inefficient by this factor [26]. The application

of dimensionality reduction techniques allows for a reduction in the computing com-

plexity associated with the data. Moreover, by using dimensionality reduction tech-

niques, the accuracy and performance of clustering algorithms can be improved [27].

There are also possible disadvantages of using dimensionality reduction methods.

Their results may be deceptive, as they might display cluster formations that may not

exist in the underlying data or depict observations as being distant from one another

in the projected space despite their proximity in the original space [28].

There exist two primary techniques for dimensionality reduction, namely Principal

Component Analysis (PCA), which operates in a linear manner, and Uniform Mani-

fold Approximation and Projection (UMAP), which operates in a non-linear manner.

9



2.3.1 PCA

Principal Component Analysis (PCA) is a linear dimensionality reduction method

that preserves the variation by removing the redundancy in the data [29]. PCA iden-

tifies a collection of new orthogonal axes, referred to as principal components, which

effectively capture the highest amount of variance present in the dataset. The ini-

tial principal component denotes the direction in which the data exhibits the greatest

variability, followed by the subsequent principal components in a sequential manner.

However, PCA assumes the underlying relationships in the data are linear. This im-

plies that it might not efficiently capture complex non-linear patterns that exist within

the data.

2.3.2 Uniform Manifold Approximation and Projection (UMAP)

Uniform Manifold Approximation and Projection (UMAP) is a non-linear dimension-

ality reduction method that preserves the local and global structure of the data [30].

This is achieved by representing data points as a weighted graph, where edges with

higher weights connect related data points. UMAP then optimizes a low-dimensional

representation of the data in a manner that closely approximates the graph topol-

ogy observed in the original high-dimensional data. The distinguishing feature of

UMAP is its capacity to effectively handle non-linear interactions, hence differentiat-

ing it from linear dimensionality reduction methods such as PCA. Furthermore, it is

known for its computing efficiency compared to other non-linear algorithms such as

t-SNE [31].

2.4 Clustering Algorithms

2.4.1 k-means

The main goal of k-means clustering is to divide a given dataset into a predetermined

number of clusters, taking into consideration the similarity between data points [32].
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k-means can be more accurately classified as a partitioning algorithm rather than a

clustering algorithm. The k-means algorithm does not discover clusters but rather

divides the dataset into a specified number of partitions by minimizing the distances

within each partition. The process begins by randomly picking k initial cluster cen-

troids from the dataset, where k represents the required number of clusters. Subse-

quently, the algorithm proceeds by assigning each individual data point to the centroid

that is closest to it, utilizing a selected distance measure. Then, iteratively updates the

centroids by re-calculating the arithmetic mean of the data points belonging to each

cluster. This process repeats until the centroids are no longer changed. Although

k-means is a commonly used and computationally efficient algorithm, it is subject to

certain assumptions regarding the shape of clusters, sensitivity to initial conditions,

and the requirement of a predetermined number of clusters. To address these issues,

various techniques have been proposed. One example of such a method is the k-

means++ initialization approach [33]. It changes the selection of the initial centroid

location, resulting in faster convergence and improved clustering outputs. Moreover,

it helps reduce the sensitivity of the original algorithms, hence increasing the likeli-

hood of converging to the global optimum solution. In addition, one notable benefit

of the k-means algorithm comes in its computational efficiency, making it the only

feasible clustering approach for datasets of significant sizes1. The time complexity

of the algorithm is O(n · k · I · d), where: n is the number of data points, k is the

number of clusters, I is the number of iterations required for convergence, and d is

the dimension of the data.

2.4.2 Hierarchical Agglomerative Clustering(HAC)

It is a hierarchical clustering method that follows a bottom-up strategy [34]. Initially,

each data point is treated as an individual cluster. Afterward, the algorithm proceeds

by repeatedly merging the clusters that are closest to each other until a predefined

stopping criterion is satisfied. The identification of the nearest clusters is achieved

through the use of a distance metric (linkage), single, complete, and average. The

algorithm generates a hierarchical arrangement of clusters, which can be represented

visually using dendrograms. Dendrograms are a tree-like structure, illustrating the
1 https://hdbscan.readthedocs.io/en/latest/comparing_clustering_algorithms.html#k-means
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process of merging clusters at each iteration. This enables data analysts to compre-

hend the hierarchical organization of clusters visually. Moreover, the algorithm pro-

vides n_clusters parameter, which cuts the created dendrogram at different heights to

get the specified cluster number.

The calculation of each linkage criteria as follows:

• In the Single Linkage method, the distance between two clusters is defined as

the minimum distance observed between any pair of individuals belonging to

the two respective clusters.

• In the Complete Linkage, the measure of distance between two clusters is de-

termined by the maximum distance observed between any two members be-

longing to the respective clusters.

• In the Average Linkage, the measure of distance between two clusters is com-

puted as the average of all distances between individual members belonging to

the respective clusters.

2.4.3 Butina

It is an unsupervised, non-hierarchical clustering algorithm, which is an adapted vari-

ant of the Sphere Exclusion algorithm [35]. It is also referred as Taylor cluster-

ing [36]. Although the procedures have similarities, Taylor did not employ them

for the purpose of grouping. It is only developed for compound clustering and its

use-cases. At first, the algorithm calculates cluster centroids. A good cluster centroid

is the point that has the most neighbor points connected to it. For each element, their

neighbors are calculated and sorted in descending order. A distance metric is used

to determine the distances between each member in a sorted list and all the remain-

ing elements. The threshold criteria determine the selection of distances within the

same cluster. The process of iteratively repeating until it is applied to all remaining

elements that have not yet been assigned as members of another cluster.

The distance metric is generally Tanimoto (Jaccard) for traditional ECFP4 descriptors
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and Euclidean for learned compound descriptors [37]. Moreover, the threshold is a

user-defined parameter, and its best value is selected using a grid-search mechanism.

2.4.4 Hierarchical Density-Based Spatial Clustering of Applications with Noise

(HDBSCAN)

Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDB-

SCAN) is a density-based clustering method, which is a hierarchical extension of

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [38, 39].

Its primary objective is to detect clusters that vary in shape and size within a given

dataset while also distinguishing and labeling noise spots. It calculates the mutual

reachability distance among the data points. A hierarchy is formed by constructing

a minimum spanning tree based on these distances. Subsequently, the hierarchy is

compressed into a cluster tree. In conclusion, the process involves extracting clus-

ters from the tree by identifying related components that satisfy certain requirements,

such as a minimum_cluster_size. An important feature of the algorithm is its abil-

ity to handle varying sizes of clusters on non-uniform data, which enables its use

on complex datasets. Additionally, due to its nature as a density-based approach, it

exhibits improved performance when utilized in combination with dimensionality re-

duction techniques that effectively reduce the data points to a significantly denser set

of dimensions2

2.5 Compound Distance Measures

A compound distance measure is employed to calculate the distance between two

compounds in terms of compound descriptors. It offers a quantitative evaluation of

the degree of difference between each pair of compounds. By employing these meth-

ods, it is possible to construct a distance matrix that can afterward be utilized in

clustering algorithms.

Euclidean distance and Tanimoto coefficient are chosen for the distance calculation

task of compound descriptors.

2 https://umap-learn.readthedocs.io/en/latest/clustering.html
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Tanimoto coefficient measure, which is also referred to as the Jaccard coefficient [40],

evaluates the degree of overlap between two binary sets by calculating the ratio of the

intersection size to the union size [35]. It is generally used with ECFP4 descriptors

since they work better with binary data [37]. Euclidean measures the spatial distance

between two points in a multi-dimensional Euclidean space, hence denoting their dis-

similarity. Their respective formulations are shown in Equation 2.1 and Equation 2.2.

Tanimoto(A,B) =
|A ∩B|
|A ∪B|

(2.1)

In Equation 2.1, A and B denote vectors that consist of elements with binary values.

Euclidean(x, y) =
1

1 + d(x, y)
(2.2)

In Equation 2.2, d(x, y) represents the Euclidean distance between x and y points.

2.6 Clustering Evaluation Metrics

Clustering evaluation metrics offer quantitative measurements such as cluster homo-

geneity, compactness, and separation to determine how well a clustering algorithm

groups data points into clusters. Through the utilization of clustering metrics, one

can conduct comparisons across the results of various clustering algorithms, optimize

the hyperparameter values of clustering algorithms, and determine the optimized al-

gorithm for the particular data.

Certain evaluation metrics need the presence of ground truth labels, while others can

be effectively employed in datasets that lack such labels. In our study, three met-

rics have been selected for the evaluation of the resulting clustering for an unlabeled

dataset: Silhouette Score, Calinski-Harabasz Index, and Davies-Bouldin Index. Three

metrics, namely the Homogeneity Score, Mutual Information Score, and Adjusted

Rand Index, are used for a dataset that has ground truth labels.

The implementations of the metrics used in this study are taken from scikit-learn [41]

and RAPIDS [42] python libraries.

14



2.6.1 Silhouette Coefficient and Silhouette Score

The silhouette value is a metric that quantifies an object’s cohesion (similarity to its

own cluster) in relation to its separation from other clusters. [43]. It is within the range

of -1 to 1. A silhouette value in near proximity to 1 indicates that the object exhibits

a strong correlation with its respective cluster while displaying a weak correlation

with neighboring clusters. This reflects a distinct separation between clusters. On the

other, a number in close proximity to -1 indicates the possibility of misassignment of

the item to a cluster. Conversely, values near 0 suggest the presence of overlapping

clusters or data points that are in close proximity to cluster boundaries.

Silhouette(i) =
b(i)− a(i)

max{a(i), b(i)}
(2.3)

In Equation 2.3, a(i) represents the average distance of point i to other points within

the same cluster, and b(i) represents the smallest average distance of point i to points

in any other cluster (excluding the cluster it belongs to). The silhouette value for each

data point indicates the quality of its cluster assignment.

2.6.2 Calinski-Harabasz Index

Calinski-Harabasz Index evaluates the degree of separation among clusters by exam-

ining the ratio of variation in inter-clusters to variance in intra-clusters. The objective

is to identify higher values that demonstrate well-defined and visually separated clus-

ters.

CH =
Tr(B)
Tr(W)

× N − k

k − 1
(2.4)

Equation 2.4 involves the trace of the between-cluster scatter matrix, denoted as

Tr(B), and the trace of the within-cluster scatter matrix, denoted as Tr(W). N rep-

resents the total number of data points, while k represents the number of clusters.
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2.6.3 Davies-Bouldin Index

Davies-Bouldin Index evaluates both the separation and cohesion of clusters at the

same time. It measures the mean similarity between each cluster and its most sim-

ilar cluster, taking into account both the variation within clusters and the distances

between clusters. Clusters containing lower values are a sign of better clustering, and

they represent well-separated and cohesive clusters.

DB =
1

k

k∑
i=1

max
j ̸=i

(
σi + σj

d(Ci, Cj)

)
(2.5)

In Equation 2.5, the variable k represents the number of clusters. The symbol σi

denotes the average distance between data points inside cluster Ci and its centroid.

Similarly, σj represents the average distance within cluster Cj . Lastly, d(Ci, Cj) rep-

resents the distance between the centroids of clusters Ci and Cj .

2.6.4 Homogeneity Score

The Homogeneity Index evaluates the clusters, where each cluster is presumed to

consist only of data points from a single class. In terms of the distribution of real

classes within clusters, it measures the degree of cluster purity. A high homogeneity

index value indicates that each cluster primarily corresponds to a different true class,

reflecting a clear and consistent data partitioning. The range of the index value is

from 0 to 1.

Moreover, this measure is particularly useful when one wants to cluster binary labeled

data such as active and inactive molecules. Since the goal of our study is to cluster

active molecules from inactive ones, employing the homogeneity index shows the

degree to which the clusters have only active molecules or inactive molecules.

H = 1− H(C|K)

H(C)
(2.6)

In Equation 2.6
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• H represents the homogeneity score.

• H(C|K) is the conditional entropy of the cluster assignments given the ground

truth labels.

• H(C) is the entropy of the ground truth labels.

2.6.5 Mutual Information Score

The Mutual Information Index quantifies the shared knowledge between the two sets

of labels, demonstrating the extent to which understanding of one set aids in the

prediction of the other. Greater mutual information values imply that the clustering

algorithm effectively captures the underlying structure of the data.

MutualInfo(C, T ) =
k∑

i=1

l∑
j=1

|Ci ∩ Tj|
n

log

(
n · |Ci ∩ Tj|
|Ci| · |Tj|

)
(2.7)

In Equation 2.7:

• Ci represents the ith cluster;

• Tj represents the jth true class;

• |Ci ∩ Tj| is the number of common points between Ci and Tj;

• |Ci| is the number of points in cluster Ci;

• |Tj| is the number of points in true class Tj;

• n is the total number of data points;

• k is the number of clusters;

• l is the number of true classes.

.
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2.6.6 Adjusted Rand Index (ARI)

Adjusted Rand Index (ARI) quantifies the degree of similarity between the cluster la-

bels generated by a clustering algorithm and the actual cluster labels. The evaluation

metric takes into account the differences for both true positive and true negative in-

stances and normalizes the resulting score to a range between -1 and 1. Higher values

on this scale indicate a stronger level of clustering accuracy. Moreover, it penalizes

unnecessary splits which become useful when the total number of clustering sizes is

known.

ARI =
RI − Expected RI

Max RI − Expected RI
(2.8)

In Equation2.8, RI represents the Rand Index, Expected RI denotes the expected value

of the Rand Index assuming randomness, and Max RI signifies the upper limit of the

Rand Index.

2.7 Related Work on Compound Representation and Clustering

An essential part of the drug(compound) discovery process is predicting the interac-

tions between compounds and targets. In drug-target interaction, compound represen-

tation is a crucial step. Machine learning methods for compound representation are

popularly based on Variational AutoEncoders (VAE), graphs, and techniques for Nat-

ural Language Processing (NLP). Numerous prior studies have employed compound

representations and clustered compounds with the aim of identifying the appropriate

drug for the target protein.

Hadipour et al. introduce a novel molecular descriptor approach by combining PCA

and VAE to integrate local and global molecular attributes [44]. The effectiveness of

these descriptors is evaluated on the Mycobacterium tuberculosis dataset [45]. In this

study, the superiority of VAE-based descriptors over AE-based ones is demonstrated

through several clustering analyses that include k-means, AE-assisted k-means, VAE-

assisted k-means, and BIRCH algorithms. They state that their best scored method
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uses both local and global molecular features, which are created with RDKit [12].

The created molecular features are made input for VAE model to create a latent space.

This approach is claimed to reduce virtual screening times on large datasets signif-

icantly. However, the computational complexity of VAE models is very high and

requires a huge amount of training time [46]. Furthermore, alternative methods, such

as UMAP, are shown to give faster and more accurate results than the autoencoder

one [30].

Yang et al. employ a graph-based deep learning model called Chemprop, which learns

the molecule representation through a message-passing network over the neighbor-

ing information of the graph [16]. In their benchmark on MoleculeNet dataset [47],

Chemprop outperforms most baseline methods for classification and regression tasks.

Another study also constructs a similar graph model called PotentialNet [48], which

utilizes multi-task graph convolution. PotentialNet is reported to improve the per-

formance over traditional machine learning models. However, training graph-based

models needs a huge computational power [49]. Descriptor-based machine learn-

ing models that are easy to train and computationally efficient are shown to beat the

graph-based models on property prediction tasks [49]. Hence, it can be stated that the

use of graph models for molecule property prediction on large chemical databases is

slow and inefficient.

Donmez utilizes Chemprop model to create learned compound descriptors of 25 di-

mensions [50]. Based on these descriptors, the compounds are clustered and the

resulting clusterings are evaluated with several clustering accuracy metrics on 3 dif-

ferent datasets. The performance is then compared with the traditional compound

descriptor, ECFP4. The results show that using Chemprop compound descriptors

gives faster running time and efficient storage space than ECFP4 descriptors. More-

over, Chemprop descriptors give better results on one dataset, while in others, ECFP4

outperforms Chemprop.

Cassar discusses the importance of a fast clustering algorithm [51]. A distributed
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clustering mechanism is proposed where the clustering job is shared among more

than one worker computer. Two novel algorithms are implemented, D-Butina and

DLSH-Butina. The former uses the SPARK framework for task distribution while the

latter uses a novel approximation technique called Locality-sensitive hashing(LSH) to

find the neighboring molecule. The accuracy of the distributed clustering is evaluated

and its speed is compared with the traditional BUTINA and k-means clustering algo-

rithms. The proposed approach demonstrates a significant improvement in processing

speed, ranging from 2 to 8 times while ensuring cluster accuracy.

20



CHAPTER 3

METHOD

The main goal is to use learned compound descriptors for clustering and choose rep-

resentative compounds from each cluster to decrease the number of compounds for

virtual screening to a manageable number. The compounds are expected to be clus-

tered based on their activity property which means that the compounds in the same

cluster would interact with a similar target protein or protein family. The researchers

can then use this reduced number of compounds for virtual screening and also for

their in-lab experiments, which effectively decreases time and money resources.

The proposed method has 3 main steps and they are summarized below. Also, the

high-level step-by-step visual representation is shown in Figure 3.1

• Extract learned compound descriptors from the pre-trained BERT model, Chem-

BERTa.

• Apply dimensionality reduction techniques such as PCA and UMAP onto the

learned compound descriptors to get efficient storage size and faster clustering

speed.

• Group compounds based on their activity property using the descriptors ob-

tained in the previous step by using clustering techniques such as k-means,

HAC, and Butina.

In the following three sections, the way of selecting the best methods for each step

in our approach is given. In the first section, the reasons for choosing the Chem-

BERTa model for learned compound descriptors are given. In the second section, the

selection of the dimensionality reduction algorithm is shown. In the final section, the

selection of the computing resource is explained.
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3.1 Choosing of the Learned Compound Descriptor

In Section 2.1.1, the computational compound representation methods are explained.

Mainly, there are two approaches, traditional ECFP4 descriptors(fingerprints) and

learned model descriptors from the deep learning models. Since the goal of the thesis

is to analyze the effect of learned compound descriptors on the clustering process, a

deep-learning model needed to be selected. To this end, the ChemBERTa model is

chosen.

Although previous studies have used models such as Variational Autoencoder(VAE) [44]

and Directed Message Passing Neural Network(D-MPNN) [50] for learned descrip-

tors for clustering compounds, the use of BERT models for this purpose hasn’t been

explored to the best of our knowledge. The intuition behind selecting the Chem-

BERTa model is that BERT models are proven effective in the diverse fields of NLP

tasks, such as question-answering, next-sentence prediction, and text clustering [52].

This means that the text representation of the model is highly accurate and usable for

other text-based tasks. Given that our datasets are composed of only text-based rep-

resentations of compounds, denoted as SMILES, the BERT model can be leveraged

and utilized to calculate learned compound descriptors for the clustering algorithms.

BERT models can be utilized in two steps: fine-tuning the pre-trained model and cal-

culating fixed-sized representations from the pre-trained model. Fine-tuning part is

not needed for calculating the learned compound descriptors, and it is explained in

detail in Ablation Studies 4.2.1.

3.1.1 Calculating the Learned Compound Descriptors

The feature-based technique utilizes the pre-trained BERT model to extract fixed

vectors. This approach is alternatively referred to as contextualized word embed-

ding [53, 52]. The process involves mapping each word to a vector space. Conse-

quently, words with comparable meanings exhibit proximity in the aforementioned

vector space. This approach offers two distinct advantages in comparison to the di-

rect fine-tuning of the BERT model. One primary benefit is the ability to incorporate

a problem-specific design, as not all natural language processing (NLP) problems can

be effectively addressed using a transformer encoder architecture. Another benefit
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is the enhanced computational efficiency resulting from the execution of computa-

tionally intensive pre-training representation only once. Hence, once computed, this

representation can be utilized across multiple experiments. Moreover, the utilization

of a feature-based technique in conjunction with a pre-trained BERT model renders it

highly scalable, making it suitable for the analysis of extensive datasets.

The pre-trained BERT models contain a latent space of the vector embeddings, which

we call in the context of the thesis, learned compound descriptors. Once the Chem-

BERTa model has been selected, we must extract learned compound descriptors from

the model. The learned compound descriptors can be extracted from the model

through the following process:

• Using the pre-trained Byte-Pair-Encoding tokenizer of ChemBERTa, tokenize

each SMILES compound. Also, add special tokens [CLS], [SEP] and [PAD]

• Initialize pre-trained ChemBERTa model with tokenized inputs.

• Get atom-level descriptors from the last hidden state of the initialized model.

• Get the 384-dimensional compound descriptors by mean averaging atom-level

descriptors

The BERT tokenizer handles the process of converting the input compound such that

the BERT model can utilize them. However, the dimension of the tokenized output for

each compound is determined dynamically. For instance, given a SMILES notation

compound, the tokenizer returns a vector with size [62, 384], but for another SMILES

notation compound, it can return a vector with size [60, 384]. These vectors reflect

the model at the atomic level; each vector dimension represents an atom. Since the

clustering algorithms require compound-level descriptors, descriptors are converted

from atom-level to compound-level by mean averaging. The process can be seen in

Figure 3.2. Throughout the thesis, the final vector size, which has 384 dimensions, is

referred to as the ChemBERTa model’s learned compound descriptors.
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Figure 3.2: The process of calculating learned compound descriptors from Chem-

BERTa model

3.2 Choosing the Dimensionality Reduction Method

The compound descriptors have high dimensions, with ECFP4 having 2048 dimen-

sions and ChemBERTa having 384 dimensions. In order to reduce the computational

complexity and address the challenges caused by the curse of dimensionality, di-

mensionality reduction techniques need to be applied to the compound descriptors.

Furthermore, the utilization of dimensionality reduction techniques has been shown

to increase the effectiveness and accuracy of clustering algorithms[27]. As seen in

our methodology steps given in Figure 3.1, clustering is applied after dimensionality

reduction. Further elaborations on these issues can be found in Section 2.3

As for the dimensionality reduction method, UMAP method with 16 dimension is

selected for following reasons:

• It can work with non-linear and complex data

• It is more accurate than PCA

• It is faster than other non-linear reduction algorithms
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Detailed information about the selection process of the dimensionality reduction method

can be found in ablation studies section 4.2.2

3.3 Choosing the Clustering Metrics

For unlabeled analyses of datasets, silhouette score is chosen. The motivation for this

as follows:

• Visual silhouette plots are a suitable complement to this technique since they

offer an enhanced understanding of the distribution of individual data points

within clusters, hence allowing a full evaluation of the clustering outcomes.

• The interpretability of its value range is straightforward. A value of -1 indicates

the presence of misassigned clusters, while a value of 0 signifies the existence

of overlapping clusters. Conversely, a value of 1 denotes the presence of well-

defined clusters.

• It is also widely used in the clustering process of the bioinformatics field [44,

54, 50].

In the context of analyzing labeled datasets, the selection of the homogeneity score is

preferred above metrics such as the Adjusted Rand Index (ARI). The Homogeneity

Score quantifies the extent to which each cluster exclusively consists of data points

belonging to a singular ground truth class. Additionally, it does not impose penal-

ties for additional divisions in the datasets, unlike ARI. This feature proved to be

especially useful for our datasets, as they exclusively consist of binary labels, specif-

ically active and inactive. Given the objective of our study, which is to differentiate

active molecules from inactive ones effectively, it is more appropriate to utilize the

homogeneity score.
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CHAPTER 4

EXPERIMENTS

4.1 DATASETS

In this thesis, datasets are employed for several objectives:

• finding the hyperparameter values of the dimensionality reduction method,

• determining a model for learned compound descriptors through fine-tuning, and

• executing the experiments.

The datasets are derived from four primary sources:

• ChEMBL [6],

• Directory of Useful Decoys Enhanced (DUD-E) [55],

• ZINC Is Not Commercial 15 (ZINC 15) [56], and

• Johnson et al. M. Tuberculosis [45].

4.1.1 ChEMBL

ChEMBL database consists of over 20 million curated bio-activity measurements,

over 2 million distinct compounds, and roughly 15,000 protein targets [6]. The bio-

activity measurements offer information on the effectiveness and activity of various

compounds against protein targets that allows the investigation of drug-target interac-

tion.
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We have used the subsets of datasets from versions 27 and 29 of the ChEMBL

database in our experiments. We identify an active compound in these subsets if

its pChEMBL ≥ 7 value corresponds to its target protein; this value is obtained dur-

ing the filtering process [57, 50].

4.1.1.1 ChEMBL Version 27

Three subset datasets of the ChEMBL version 27 database are used in the experi-

ments: ChEMBL1862 (ABL1), ChEMBL286 (Renin), ChEMBL1947 (THB). Gener-

ation of these datasets is based on the methodologies outlined in [57, 50]. A summary

of the methodologies is as follows: datasets are produced with shared similarities to

DUD-E. DUD-E is an extensive database including both active and inactive chemi-

cals that exhibit similarity to the active molecules. The active compounds associated

with a certain target are identified. Subsequently, a total of 60 inactive compounds

are added for each active compound. The aforementioned process is carried out for

ABL1, Renin, and THB datasets, which are the selected sub-datasets of DUD-E [51].

Each dataset is represented in a final form that has two columns, the SMILES nota-

tion, and its corresponding binary label. The label "1" denotes that the compound has

interacted with the target, whereas the label "0" signifies that there is no interaction.

Table 4.1: Summary of the 3 subset datasets of ChEMBL_27 database and their re-

spective active and inactive compound counts.

Dataset Active Compounds Inactive Compounds Total Compounds

ABL1 1632 103,946 105,578

Renin 2667 167,330 169,997

THB 418 25,612 26,030

4.1.1.2 ChEMBL Version 29

The filtered 6 subset datasets of the ChEMBL version 29 database are used in the

experiments, GPCR, Ion Channel, Kinase, Nuclear Receptor, Protease, Transporter.
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The same filtering steps from [58, 59] are applied. The main goal of the filtering is

to get mutually exclusive active compounds based on each target. The process basi-

cally eliminates compounds that have no target, no taxonomy, no pChEMBL value,

and more than one interacted target. The final filtered dataset numbers are in Table 4.3

The utilization of these datasets can be seen in two primary experiments within our

work, namely the finetuning of the ChemBERTa model 4.2.1 and the clustering ex-

periment discussed in this chapter. For the model finetuning part, both active and

inactive compounds are used for each dataset.

The experiments conducted in this chapter only utilize active molecules, which are

combined from each protein family. Throughout the thesis, this data set is commonly

referred to as the 6 protein families dataset. The rationale behind employing this

approach comes from the fact that the six subsets of the dataset were initially gener-

ated for the purpose of binary classification, as stated in the study by Dalkiran [58].

However, in order to utilize them for the purpose of clustering, it is necessary to alter

their shape. Therefore, with the utilization of only active compounds taken from each

dataset, a total of six distinct clusters are obtained.

Table 4.2: Summary of the protein families and their respective active and inactive

compound counts.

Protein family Active Compounds Inactive Compounds Total Compounds

GPCR 36,924 31,085 68,009

Ion Channel 5,996 14,167 20,163

Kinase 35,531 30,778 66,309

Nuclear Receptor 5,099 6,668 11,767

Protease 15,718 19,518 35,236

Transporter 3,666 5,898 9,564

4.1.2 Directory of Useful Decoys, Enhanced (DUD-E)

Directory of Useful Decoys, Enhanced (DUD-E) database has a total of 102 target

proteins together with their corresponding active and inactive compounds. The term
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"decoy" refers to inactive chemicals that share similar chemical characteristics to ac-

tive compounds. This particular characteristic introduces a higher level of complexity

to the clustering operation [55]. Among the 102 target proteins, three specific pro-

tein datasets, namely ABL1, Renin, and THB, are selected for further analysis as

described in the study by Cassar [51]. These three datasets, similar to the subset of

ChEMBL datasets, consist only of two columns: SMILES notation and binary label

that indicate the activity of the compounds.

Table 4.3: Summary of the protein families and their respective active and inactive

compound counts.

Dataset Active Compounds Inactive Compounds Total Compounds

ABL1 152 10,750 10,902

THB 103 7,450 7,553

Renin 104 6,958 7,062

4.1.3 ZINC 15

ZINC 15 database is one of the biggest and most comprehensive chemical databases

accessible for computational drug discovery. It has a collection of more than 800

million different SMILES strings [56]. 2021 iteration of the ZINC15 database is

used similarly to the previous work [50]. Then, Flagments subset of the database is

selected. This subset comprises 900,000 compounds characterized by a molecular

weight ranging from 250 to 350 daltons and a logP value ranging from -1 to 3.5. This

final dataset is utilized to demonstrate the scalability and effectiveness of our method.

4.1.4 Johnson M. Tuberculosis

Johnson M. Tuberculosis dataset contains 47,217 unlabeled compounds represented

in SMILES [45]. It is created by conducting a comprehensive chemical-genetic screen

targeting the bacteria Mycobacterium tuberculosis. This is achieved by generating

chemical-genetic interaction profiles (CGIPs) through the utilization of mutant strains

of M. tuberculosis. This dataset is used to compare the effectiveness of our method.
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4.2 Ablation Studies

In order to determine the optimal approach for each step in our methodology, a series

of experiments are conducted. These experiments included the fine-tuning of the

ChemBERTa model, investigations into the selection of an appropriate dimensionality

reduction method, and the identification of the most suitable computing device.

4.2.1 Finetuning the ChemBERTa model

In the fine-tuning process, the best model indicated by ChemBERTa-2 paper is used,

which is the Multi-Task Regression (MTR) version of the model trained on 77 mil-

lion unlabeled SMILES compounds [1]. There is also the Masked Language Model-

ing(MLM) version of the model, but the authors indicate that it is only useful for their

development, architecture selection setup, and its results are worse than the MTR

version. Hence, the pre-trained ChemBERTa-77M-MTR model is downloaded from

huggingface 1 and fine-tuned with our dataset for the binary classification task. For

the fine-tuning task, we use the 6 protein families dataset on ChEMBL_29, which

is explained in detail on 4.1.1. Each protein dataset is composed of a list of com-

pounds and their respective binary labels, which indicate whether the compounds

interact with the target protein. For the whole fine-tuning process, dagster2, a data

pipeline tool, is used, and its resulting pipeline is shown in Figure 4.1. The pipeline

is composed of 3 main parts: data splitting, fine-tuning the model, and evaluating the

fine-tuned model.

1 https://huggingface.co/DeepChem/ChemBERTa-77M-MTR
2 https://dagster.io/

31



Figure 4.1: End-to-End ChemBERTa model fine-tuning pipeline using dagster tool

on 6 protein families datasets on ChEMBL_29 database.

The step-by-step version is as follows:

• Data is split randomly into 3 main parts; training(80%), validation(10%) and

test(10%).

• Byte-Pair Encoding (BPE) tokenizer is used to convert SMILES to model in-

puts.

• The model is fine-tuned on the training set for 10 epochs.

• Model evaluated with Accuracy, Area Under the Receiver Operating Character-

istics(AUROC), and Area Under Precision-Recall Curve(AUPRC) metrics on

the test dataset.

In order to prove the learned descriptors of the ChemBERTa model are useful, we

evaluate the classification accuracy of the model. The fine-tuning evaluation results

for each 6 protein families are presented in Table 4.4. The table shows the Chem-

BERTa model classifies active and inactive compounds with more than 0.75 AU-

ROC score for each protein family. Moreover, in the Result section of the original
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ChemBERTa-2 paper [1], the authors show the MoleculeNet benchmark scores of the

ChemBERTa-2 model with other state-of-the-art models, and they claim that their

model outperforms Chemprop model (D-MPNN) on 6 out of 8 fine-tuning tasks. By

combining our experiment results and the benchmark scores of the original paper, we

conclude that the ChemBERTa-2 model is able to learn from SMILES text represen-

tations of the compounds and give competitive results.

Table 4.4: Performance evaluation for classification of the fine-tuned ChemBERT-a

model on 6 protein families dataset.

Protein Type AUROC ↑ AUPRC ↑ ACC ↑ Loss ↓

GPRC 0.77 0.75 0.68 0.47

Ion channel 0.78 0.79 0.71 0.35

Kinase 0.80 0.81 0.72 0.36

Nuclear receptor 0.81 0.76 0.74 0.40

Protease 0.79 0.74 0.73 0.41

Transporter 0.79 0.73 0.72 0.46

4.2.2 Ablation of Dimensionality Reduction Method

PCA and UMAP are selected as candidate dimensionality reduction methods for ab-

lation study. PCA is a linear and fast algorithm which widely used in the Drug-Target

Interaction processes [60, 61]. The UMAP algorithm has been shown to be effi-

cient in processing non-linear data [30]) and has recently been applied in the field

of bioinformatics [62]. Although t-SNE can be used for non-linear data [57, 63], its

computational complexity is high and requires longer running times than UMAP [28].

Therefore, t-SNE has not been chosen as a dimensionality reduction technique in our

study.

The dimensions of 16 and 32 are used for dimensionality reduction, as suggested in
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the UMAP documentation 3. The reasoning behind this is that these dimensions are

considered to maintain a balance between computing efficiency and the explainabil-

ity of the underlying data. It is also noteworthy that the Chemprop descriptors, which

have 25 dimensions, are only reduced to 16 dimensions. In addition, the GPU im-

plementations of PCA4 and UMAP5 [64] from NVIDIA RAPIDS framework [42] are

used for the experiments.

The k-means technique is chosen for clustering in the experimental setup. Given the

fixed number of clusters, which is 6, the k-means algorithm can be utilized effec-

tively. Moreover, it is used in similar tasks in the bioinformatics field [44].

To show the results of different dimensionality reduction methods, a series of experi-

ments are conducted on a subset of the CheEMBL_29 database (see Section 4.1.1.2).

This subset consisted of 6 protein families and contained a total of 6,000 SMILES

molecules, with 1,000 molecules attributed to each protein family. The studies were

conducted for all three descriptors, namely ChemBERTa, Chemprop, and ECFP4.

The application of PCA and UMAP techniques effectively reduces the dimension-

ality of the descriptors to 16 and 32 dimensions, respectively. Following that, the

reduced dimensional descriptors are subjected to clustering using the k-Means, and

their performance is evaluated using the Silhouette Score.

The experiments are conducted using 10 different random_seed values, their mean

and standard deviation results are presented in Table 4.5. The analysis reveals that

the utilization of UMAP with 16 reduced dimensions yields the highest silhouette

score. While UMAP with 32 dimensions shows comparable scores to UMAP with

16 dimensions, it requires larger storage space and increased computing complex-

ity. Therefore, UMAP with a dimensionality of 16 is chosen for utilization in the

following experiments in Chapter 4.

As previously mentioned in Section 2.3, dimensionality reduction techniques have a

tendency to show data points at relatively close distances to one another. This might

3 https://umap-learn.readthedocs.io/en/latest/clustering.html
4 https://docs.rapids.ai/api/cuml/stable/api/#principal-component-analysis
5 https://docs.rapids.ai/api/cuml/stable/api/#umap

34



Table 4.5: k-means clustering results evaluated with silhouette score(↑) for choosing

dimensionality reduction method on the subset of 6 protein families dataset.

Method Dimension ChemBERTa Chemprop ECFP4

No Reduction - 0.14 ± 0.03 0.13 ± 0.05 -0.15 ± 0.10

PCA 16 0.19 ± 0.05 0.16 ± 0.01 0.04 ± 0.15

PCA 32 0.16 ± 0.03 - 0.05 ± 0.10

UMAP 16 0.36 ± 0.07 0.32 ± 0.04 0.28 ± 0.08

UMAP 32 0.33 ± 0.04 - 0.31 ± 0.10

be the reason for the observed increase in silhouette scores. Therefore, given that our

dataset is labeled, we additionally assess the homogeneity score of the experiments to

ensure the validity of the dimensionality reduction methods, which results are shown

in Table 4.6. Like Silhouette experiments, 10 different random_seed values, their

means and standard deviations are calculated. The results indicate that the utilization

of UMAP has led to an improvement in the scores for all three descriptors. The use of

Principal Component Analysis (PCA) does not yield significant changes in our data

due to its linear nature, which is not well-suited for handling the complexity of our

dataset.

Table 4.6: k-means clustering results evaluated with homogeneity score(↑) for choos-

ing dimensionality reduction method on the subset of 6 protein families dataset.

Method Dimension ChemBERTa Chemprop ECFP4

No Reduction - 0.39 ± 0.20 0.35 ± 0.15 0.41 ± 0.10

PCA 16 0.42 ± 0.15 0.48 ± 0.07 0.44 ± 0.10

PCA 32 0.40 ± 0.10 - 0.42 ± 0.08

UMAP 16 0.58 ± 0.04 0.55 ± 0.02 0.51 ± 0.08

UMAP 32 0.60 ± 0.09 - 0.52 ± 0.06

The findings related to the hyperparameter n_clusters are presented in Figure 4.2,
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Figure 4.3, and Figure 4.4. It is evident that both PCA with 16 dimensions and 32

dimensions yield comparable outcomes to the non-reduced version. This implies that

the dataset at present exhibits a non-linear structure, making the application of PCA, a

linear dimensionality reduction technique, ineffective in understanding the underlying

patterns within the data. Furthermore, it is seen that lower scores are obtained when

no reduction is carried out. This observation suggests that in the setting of higher

dimensional data, the experiments suffer from the curse of dimensionality.

Figure 4.2: Detailed version of k-means silhouette score results of ChemBERTa

model for choosing dimensionality reduction method on the subset of 6 protein fam-

ilies dataset
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Figure 4.3: Detailed version of k-means silhouette score results of Chemprop model

for choosing dimensionality reduction method on the subset of 6 protein families

dataset

Figure 4.4: Detailed version of k-means silhouette score results of ECFP4 model for

choosing dimensionality reduction method on the subset of 6 protein families dataset
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4.2.3 Ablation of the Computing Resource

Since the faster running times are one of the crucial aspects for clustering large

molecules, we put extra work into this subject. To this end, we utilize GPU instead of

CPU since it is widely used in machine learning and deep learning pipelines for speed-

ing up execution times [65]. We implement the experiment codes with maximum

GPU utilization using the pytorch library [66]. Also, we integrate GPU-compatible

clustering algorithms and evaluation methods by using the NVIDIA RAPIDS frame-

work [42]. In the RAPIDS framework, mainly the cuML 6 library is used. It can be

seen as the GPU-accelerated version of sklearn [41] for clustering algorithms. Us-

ing all aforementioned methods together in an end-to-end clustering pipeline, we get

from 8x to 20x speed up. To show the difference in running time of CPU and GPU,

we run an example k-means clustering experiment on a subset of the ZINC database.

We increase the molecule number from 100 to 80,000 and observe the running time.

Figure 4.5 shows the results of this experiment in terms of CPU and GPU running

times. We see that as the molecule number increases, CPU running times follow a

linear trend with respect to it. However, GPU running times show a logarithmic in-

crease instead of a linear one.

Moreover, as the clustering molecule number increases, we need more RAM to be

able to finish experiments without facing any out-of-memory errors. Since GPU

VRAMs are generally less than the computer’s main RAM, we implement an au-

tomatic fallback mechanism. If more than 1,000,000 compounds are clustered(the

number depends on the GPU used for the experiments), we switch to CPU for all

the calculations. Since none of our datasets exceeds this limit, we only use GPU for

all experiments without encountering any problems. However, this switching mecha-

nism is necessary to be able to cluster large compounds even though it increases the

running time.

6 https://docs.rapids.ai/api/cuml/
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Figure 4.5: The end-to-end k-means clustering running time comparison between

CPU and GPU on ZINC database with ranging from 100 to 80,000 molecules

4.3 Experimental Setup

All experiments run on a desktop computer with an AMD 5800x CPU, 32 GB RAM,

and NVIDIA RTX 3070 8 GB Graphics Card.

In order to simplify the monitoring of the experiment, we utilize dagster 7, a data

pipeline tool, in conjunction with Weight-and-Biases 8, a software designed for exper-

iment tracking. In addition, all experiments are conducted with a fixed random_seed

value, which ensures consistent generation of random elements for each run of the ex-

periment. By integrating all of these elements, we maximize the traceability and repli-

cability of our experiments. In addition, the rdkit [12] library is used for molecule-

related operations such as rendering, substructure searching and similarity analysis.

The library is a cheminformatics software toolkit that is extensively utilized in the

field of chemical informatics. It is an open-source platform that offers a wide range

of functionalities for both Python and C++ programming languages. Furthermore, all

7 https://github.com/dagster-io/dagster
8 https://wandb.ai/site
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of the experiment codes can be found on github9

For each dataset, experiments are run using the combinations of different clustering

methods, descriptors, and clustering evaluation methods.

• Clustering Methods: k-means, HAC, Butina, HDBSCAN

• Descriptors: ChemBERTa, Chemprop, ECFP4

• Dimensionality Reduction Method: UMAP with 16 dimensions

• Evaluation Methods: Silhouette Score, Homogeneity Score

The selection of dimensionality reduction method and clustering evaluation methods

are explained in the previous chapter, 3.3, 3.2.

Moreover, grid-search is applied to different hyperparameter configurations for each

clustering algorithm to find the best hyperparameter. The hyperparameters can be

seen in the below. The effect of n_clusters hyperparameter is shown in the Figures of

this chapter, while the details of other hyperparameters are shown in the Appendices.

• k-means: n_clusters

• HAC: n_clusters

• Butina: threshold

• HDBSCAN: min_cluster_size

In the hyperparameter figures, there might be empty values which means that for that

hyperparameter value the evaluation score calculation can’t be applied. This is gener-

ally due to two main reasons, either the memory limit exceeded or the used clustering

algorithm doesn’t cluster any points.

Additionally, we downloaded the Chemprop model that was trained using the Multi-

task learning method on a subset dataset of the ChEMBL version 27 database [50] in
9 https://github.com/ilkersigirci/thesis-work
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order to obtain the Chemprop learned descriptors.

4.3.1 Selected Parameters of the Clustering Algorithms

For the k-means algorithm, cuML implementation 10 is used. As mentioned in cuML

documentation, it is 10x-50x faster than sklearn CPU implementation for large datasets.

Detailed information about each argument can be found in cuML documentation. Ex-

periments are run with the following parameters:

• init_method: k-means++

• n_init: 1

• max_sample_per_batch: 32,768

• max_iter: 300

• n_clusters: dynamic with respect to dataset (hyperparameter)

The most important parameter of k-means is n_clusters since the final cluster size

of the dataset is determined by it. Given the lack of prior knowledge of the exact

number of clusters in the datasets, the grid-search approach is used to determine the

optimal value for the n_clusters parameter for each dataset. The range of values for

grid search varies for each dataset, and it is explained in the respective subsections

dedicated to each dataset. Each range value is evaluated with different metrics like

silhouette score. By looking at the metrics, it is observed that the scores tend to con-

verge as the n_clusters increase to large values. The parameter init_method is selected

as the k-means++ algorithm, which has several benefits as discussed in Section 2.4.1.

The parameter max_sample_per_batch holds significance in our analysis due to the

utilization of the large datasets. It determines the matrix dimensions for the pairwise

distance calculation. The equivalent parameter, batch_size, is the counterpart param-

eter of sklearn’s implementation of Mini-Batch k-means11. According to the cuML
10 https://docs.rapids.ai/api/cuml/stable/api/#k-means-clustering
11 https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html
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documentation, it is recommended to set a lower number for max_sample_per_batch

when dealing with big n_clusters values. Nevertheless, during the course of our test-

ing, we do not experience any issues. Therefore, the parameter is set to the default

value.

In the Hierarchical Agglomerative Clustering (HAC), the implementation by Nolet et

al. [67] is used. A similar approach with k-means n_clusters parameter is followed

and its best value is determined by grid-search for each dataset. The parameters used

for the experiments are as follows.

• affinity: Euclidean

• linkage: single

• connectivity: knn

• n_clusters: dynamic with respect to dataset (hyperparameter)

Detailed information about all parameters can be found in cuML documentation 12.

The parameter connectivity is for computing the pairwise distance between each

point. k-nearest-neighbors (KNN) connectivity is chosen because, as the documen-

tation states, it has superior speed compared to alternative methods. However, due

to the limitation of cuML, Euclidean affinity(linkage) is used, which is the only sup-

ported affinity with KNN connectivity.

For Butina clustering, RDKit implementation is used13. Butina Clustering algorithm

shows significantly slower performance compared to other algorithms that are tested

since it doesn’t utilize GPU and only works on CPU. Nonetheless, since it is widely

used in the bioinformatics field for clustering compounds, the experiments are con-

ducted with the following parameters:

• distFunc: Euclidean or Tanimoto (Jaccard)
12 https://docs.rapids.ai/api/cuml/stable/api/#agglomerative-clustering
13 https://www.rdkit.org/docs/source/rdkit.ML.Cluster.Butina.html
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• isDistData: True

• threshold: (hyperparameter)

The parameter threshold defines the criteria for determining which points classify

as neighbors. The optimal value is determined by conducting a grid search on each

dataset, selecting from a range of values including 0.2, 0.35, 0.5, and 0.8. The dis-

tFunc parameter is responsible for calculating the distance between two points, and

its value is dynamically determined based on the descriptor being used. For ECFP4

descriptors, the Tanimoto (Jaccard) function is used since it works better for binary

values [37]. For learned model descriptors, Euclidean is used. isDistData parameter

represents whether the data is in distance matrix form or not. In the experiments, the

distance matrix is calculated from the descriptors before being given to the Butina

algorithm; hence, its value is set to True.

In the field of bioinformatics, the often used method for computing the distance ma-

trix is the BulkTanimotoSimilarity14 [68, 69]. However, it is observed to be slow in

our experiment runs. Therefore, implementation of pdist from the scipy library is

utilized15. This approach results in improved computational efficiency and reduced

memory requirements.

In HDBSCAN clustering, the cuML implementation is used16. In cuML documenta-

tion, it is stated that it runs 300 times faster than the original hdbscan library imple-

mentation17. The parameters used are the following:

• metric: euclidean or tanimoto(jaccard)

• connectivity: knn

• min_cluster_size: (hyperparameter)

The min_cluster_size determines the minimum threshold for the number of points

required to be classified as clusters. The optimal value is selected by grid-search on
14 https://www.rdkit.org/docs/source/rdkit.DataStructs.cDataStructs.html
15 https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html
16 https://docs.rapids.ai/api/cuml/stable/api/#hdbscan
17 https://hdbscan.readthedocs.io/en/latest/index.html
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each dataset, as detailed in their respective subsections. metric and connectivity are

selected with the same strategy in the HAC and Butina clustering algorithms.

4.3.2 Hyperparameters of the Clustering Algorithms

The hyperparameter ranges are changed with respect to each dataset. Table 4.7 dis-

plays the actual values for each range in detail. The range notation of the table is the

same one as Python. For instance, in [x, y, z], x is the beginning number, y is the

ending number, and z is the increase value at each step. By tracking the convergence

of the clustering evaluation metrics, the ending number of the ranges is chosen.

We only perform a k-means experiment for the Johnson et al. dataset in order to cre-

ate a comparable experiment with their work [44]. Hence, only n_clusters are tested

as a result. For the 6 Protein Families dataset, since the actual number of clusters is

known in advance to be 6, the n_clusters ranges are selected so as to avoid deviat-

ing too much from 6. When choosing ranges for the ChEMBL and DUD-E datasets,

convergence is taken into consideration. For the subset dataset of ZINC 15, since it

contains a large number of compounds, the ranges for n_clusters and min_cluster_size

have been increased to 900,000 in order to accommodate that.

Table 4.7: Selected Hyperparameter Ranges for each Dataset.

Dataset n_clusters threshold min_cluster_size

Johnson et al. [5, 100, 5] - -

6 Protein Families [5, 50, 2] [0.2, 0.8, 0.2] [5, 100, 5]

ChEMBL_27 [10, 500, 10] [0.2, 0.8, 0.2] [5, 100, 5]

DUD-E [10, 500, 10] [0.2, 0.8, 0.2] [5, 100, 5]

ZINC 15 [10, 1000, 20] [0.2, 0.8, 0.2] [5, 500, 10]

4.4 Clustering on Johnson et al. Dataset

Our goal for this experiment is to compare the learned compound descriptors of

ChemBERTa model + UMAP with the selected best model in Hadipour et al. [44].
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We use the same experiment setup with the paper. To this end, we downloaded the

dataset they used in [45] and evaluated the clusters with their clustering metrics: the

Silhouette Score, Calinski–Harabasz Index and Davies–Bouldin Index. As shown in

Table 4.8, our method outperforms their best model on all metrics. More information

about all trained models can be seen in Figure 4.6, Figure 4.7 and Figure 4.8.

Table 4.8: k-means clustering results on the Johnson et al. Dataset.

Model + Dimensionality Reduction Cluster Size Silhouette ↑ Calinski–Harabasz ↑ Davies–Bouldin ↓

ChemBERTa + UMAP (16) 35 0.416 34,646 0.718

ChemBERTa + UMAP (32) 25 0.414 30,161 0.697

ChemBERTa + UMAP (64) 60 0.392 29,478 0.819

Local&Global Features + VAE (32) 50 0.286 10,112 0.999

In this experimental setup, we only cluster compounds with the k-means clustering

method, and we don’t use the clustering combinations explained in the previous sec-

tion, since we want a direct one-to-one comparison with [44], and we follow their

exact experiment setup for that.

Figure 4.6: Silhouette scores of all models using UMAP(16) with different n_clusters

on the Johnson et al. Dataset
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Figure 4.7: Calinski-Harabasz scores of all models using UMAP(16) with different

n_clusters on the Johnson et al. Dataset

Figure 4.8: Davies Bouldin scores of all models using UMAP(16) with different

n_clusters on the Johnson et al. Dataset
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4.5 Clustering 6 Protein Families from ChEMBL_29

The experimental configuration for Clustering 6 Protein Families from ChEMBL_29

has 4 clustering algorithms and 3 descriptors, which results in 12 different experiment

runs. On top of this, clustering algorithms are tested with 74 different hyperparameter

setups. This makes a total of 888 experiments. Only the results of k-means and HAC

shown as figures. Other results are shown in the Appendices A.1.

• k-means - n_clusters: From 2 to 50 with 2 step size, a total of 25 different

values.

• HAC - n_clusters: From 2 to 50 with 2 step size, a total of 25 different values.

• Butina threshold: [0.2, 0.35, 0.5, 0.8], a total of 4 different values.

• HDBSCAN min_cluster_size: From 5 to 100 with 5 step size, a total of 20

different values.

Table 4.9: The results of the clustering algorithms for 3 descriptors using UMAP(16)

dimensionality reduction and with the best hyperparameter on the 6 Protein Families

dataset

Clustering method Model Hyperparameter Value Silhouette ↑ ARI ↑

k-means ChemBERTa n_clusters 6 0.31 0.15

k-means Chemprop n_clusters 6 0.28 0.11

k-means ECFP4 n_clusters 20 0.20 0.09

HAC ChemBERTa n_clusters 6 0.2 0.01

HAC Chemprop n_clusters 6 - 0.4 0.01

HAC ECFP4 n_clusters 6 - 0.6 0.01

Butina ChemBERTa threshold 0.8 - 0.21 0.1

Butina Chemprop threshold 0.5 - 0.27 0.1

Butina ECFP4 threshold 0.5 - 0.15 0.2

HDBSCAN ChemBERTa min_cluster_size 40 - 0.05 0.01

HDBSCAN Chemprop min_cluster_size 20 0.4 0.01

HDBSCAN ECFP4 min_cluster_size 70 0.2 0.03
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Since the dataset consists of active compounds on 6 Protein Families, it should have

an optimal cluster size of 6. Hence, unlike other experiments, the actual cluster num-

ber is known beforehand. Therefore, the experiment configuration is modified to

reflect it. The grid-search range for the parameter n_clusters is selected to be around

the optimal size. Furthermore, the Adjusted Rand Index (ARI) is used instead of the

Homogeneity Index for this dataset. This choice is motivated by the fact that the

dataset consists of six labels of equal size, and we aim to penalize unnecessary divi-

sions, as explained in Section 2.6.6.

For each clustering algorithm, the best scores and corresponding hyperparameter val-

ues are shown in Table 4.9. ChemBERTa descriptors perform better than others at 6

clusters for the k-means algorithm. Surprisingly, ECFP4 descriptors exhibit optimal

performance at 20 clusters, despite their low values. This could indicate that they are

not fully aware of the underlying dataset. The silhouette scores and ARI values in

the HAC, Butina and HDBSCAN clustering algorithms are extremely low for all 3

descriptors. This suggests that those clustering algorithms are not able to cluster the

dataset.

Figure 4.9 and Figure 4.10 have a black vertical line that indicates n_clusters = 6. In

Figure 4.9, in the case of HAC, the scores decrease after n_clusters = 6 for all 3 mod-

els while the best descriptors are from Chemprop. However, since the scores are close

to zero, it can be concluded that HAC does not effectively cluster the compounds. For

k-means, the silhouette scores of all models are around 0.3, and they follow a straight

line. It is an interesting finding since one would expect to see higher silhouette scores

when n_clusters = 6.

In Figure 4.10, ChemBERTa descriptors outperform other ones for k-means. A higher

ARI value is seen n_clusters = 6, as expected. For HAC, none of the models give sta-

tistically significant values.
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Figure 4.9: Silhouette scores of k-means and HAC results using UMAP(16) with

different n_clusters on the 6 Protein Families dataset.

Figure 4.10: ARI values of k-means and HAC results using UMAP(16) with different

n_clusters on the 6 Protein Families dataset.
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4.6 Clustering on ChEMBL_27

The experimental configuration for clustering on the ChEMBL_27 has 4 clustering

algorithms and 3 descriptors, which results in 12 different experiment runs. On top of

that, to be able to choose the best hyperparameters, clustering algorithms are tested

with 64 different hyperparameter setups. This makes a total of 1488 experiments.

Only the results of k-means and HAC for ABL1 dataset are shown. The results of

Renin and THB datasets can be found in the Appendices B.2.

• k-means - n_clusters: From 10 to 500 with 10 step size, a total of 50 different

values.

• HAC - n_clusters: From 10 to 500 with 10 step size, a total of 50 different

values.

• Butina threshold: [0.2, 0.35, 0.5, 0.8], a total of 4 different values.

• HDBSCAN min_cluster_size: From 5 to 100 with 5 step size, a total of 20

different values.

The experiments performed on the ChEMBL_27 ABL1 dataset contain 169,997 SMILES

compounds. Table 4.11 presents the performance evaluation for these experiments,

showing only the results of the best hyperparameter values for each clustering method.

Based on both silhouette and homogeneity score, ChemBERTa descriptors perform

better in k-means clustering than the other two models. In HAC, the ECFP4 descriptor

performs significantly better than the others. The observed value indicates that Butina

clustering is unable to effectively cluster compounds, resulting in the assignment of

random cluster labels to each molecule. Nevertheless, the ChemBERTa descriptors

outperform the other models by a narrow margin. For HDBSCAN clustering, ECFP4

descriptors provide comparatively higher silhouette and homogeneity scores. It indi-

cates that traditional descriptors are a good fit for hierarchical clustering since they

are also perform better with HAC.

Figure 4.11 and Figure 4.12 show the effect of choosing various hyperparameter

(n_clusters) values on the clustering score for k-means and HAC. We see that the per-
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formance of the ChemBERTa descriptors increases with increasing clustering num-

bers in k-means. However, the score of other descriptors are almost constant. Fur-

thermore, it can be seen that in contrast to traditional ECFP4 descriptors, both learned

descriptors perform badly with HAC.

Table 4.10: The results of the clustering algorithms for 3 descriptors using UMAP(16)

dimensionality reduction and with the best hyperparameter on ChEMBL_27 ABL1

dataset

Clustering method Model Hyperparameter Value Silhouette ↑ Homogeneity ↑

k-means ChemBERTa n_clusters 110 0.316 0.8

k-means Chemprop n_clusters 130 0.262 0.4

k-means ECFP4 n_clusters 30 0.162 0.6

HAC ChemBERTa n_clusters 90 - 0.507 0.1

HAC Chemprop n_clusters 70 - 0.518 0.1

HAC ECFP4 n_clusters 190 0.223 0.5

Butina ChemBERTa threshold 0.35 -0.094 0.2

Butina Chemprop threshold 0.35 -0.314 0.1

Butina ECFP4 threshold 0.5 -0.129 0.1

HDBSCAN ChemBERTa min_cluster_size 40 0.254 0.1

HDBSCAN Chemprop min_cluster_size 50 0.106 0.1

HDBSCAN ECFP4 min_cluster_size 50 0.549 0.4

51



Figure 4.11: Silhouette scores of k-means and HAC for 3 descriptors with different

n_clusters on the ChEMBL_27 ABL1 Dataset

Figure 4.12: Homogeneity scores of k-means and HAC for 3 descriptors with differ-

ent n_clusters on the ChEMBL_27 ABL1 Dataset
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4.7 Clustering on DUD-E

The experiment configuration has 4 clustering algorithms and 3 descriptors, which

results in 12 different experiment runs. On top of that, to be able to choose the best

hyperparameters, clustering algorithms are tested with 124 different hyperparameter

setups. This makes a total of 1488 experiments. Only the results of k-means and

HAC for the ABL1 dataset are shown. The results of Renin and THB datasets can be

found in the Appendices C.3.

• k-means - n_clusters: From 10 to 500 with 10 step size, total 50 different val-

ues.

• HAC - n_clusters: From 10 to 500 with 5 step size, total 50 different values.

• Butina threshold: [0.2, 0.35, 0.5, 0.8], total 4 different values.

• HDBSCAN min_cluster_size: From 5 to 100 with 5 step size, total 20 different

values.

There are 10,902 SMILES compounds in the experiments performed on the DUD-E

ABL1 dataset. The performance evaluation for these studies is shown in Table 4.11,

which displays the outcomes of the optimal hyperparameter settings for each cluster-

ing technique. ECFP4 performs better than other descriptors for k-means in terms

of both silhouette and homogeneity scores. ChemBERTa and Chemprop descriptors

for HAC provide near-zero homogeneity scores and negative silhouette values, indi-

cating an inability to cluster compounds well. However, ECFP4 descriptors perform

quite well, indicating that there may still be value in traditional methods. All 3 de-

scriptors for Butina and HDBSCAN provide values that are close to zero, indicating

unsatisfactory clustering performance.

The impact of selecting various n_clusters values on the clustering score for k-means

and HAC is shown in Figures 4.13, 4.14. All 3 descriptors perform at a silhouette

score of about 0.3 for k-means, and their performance is nearly consistent for values

of n_clusters. Furthermore, HAC’s clustering performance is quite poor, with the

exception of ECFP4 descriptors. Moreover, we can observe that k-means clustering

performs well for all 3 descriptors when looking at the homogeneity score.
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Table 4.11: The results of the clustering algorithms for 3 descriptors using UMAP(16)

dimensionality reduction and with the best hyperparameter on DUD-E ABL1 dataset

Clustering method Model Hyperparameter Value Silhouette ↑ Homogeneity ↑

k-means ChemBERTa n_clusters 60 0.29 0.5

k-means Chemprop n_clusters 70 0.32 0.6

k-means ECFP4 n_clusters 110 0.44 0.8

HAC ChemBERTa n_clusters 20 - 0.53 0.05

HAC Chemprop n_clusters 150 - 0.62 0.05

HAC ECFP4 n_clusters 40 0.25 0.7

Butina ChemBERTa threshold 0.35 0.06 0.03

Butina Chemprop threshold 0.35 0.04 0.02

Butina ECFP4 threshold 0.5 0.09 0.03

HDBSCAN ChemBERTa min_cluster_size 60 - 0.05 0.04

HDBSCAN Chemprop min_cluster_size 40 - 0.12 0.02

HDBSCAN ECFP4 min_cluster_size 70 0.32 0.2

Figure 4.13: Silhouette scores of k-means and HAC for all models with different

n_clusters on the DUD-E ABL1 Dataset
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Figure 4.14: Homogeneity scores of k-means and HAC for all models with different

n_clusters on the DUD-E ABL1 Dataset

4.8 Clustering on ZINC

The experimental configuration for clustering on ZINC has 4 clustering algorithms

and 3 desciptors, which results in 12 different experiment runs. On top of that, to

be able to choose the best hyperparameters, clustering algorithms are tested with 154

different hyperparameter setups. This makes a total of 1848 experiments. Only the

results of k-means and HAC are shown. The other results can be found in the Ap-

pendices D.4. Furthermore, the size of the dataset prevents the BUTINA clustering

experiments from being carried out. The justification for this is that they require more

RAM than our experiment machine and they are extremely slow to compote for large

datasets.

• k-means - n_clusters: From 10 to 1000 with 20 step size, a total of 50 different

values.

• HAC - n_clusters: From 10 to 1000 with 20 step size, a total of 50 different

values.

• Butina threshold: [0.2, 0.35, 0.5, 0.8], a total of 4 different values.
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• HDBSCAN min_cluster_size: From 5 to 500 with 10 step size, a total of 50

different values.

Figure 4.15: Silhouette scores of k-means and HAC for all models with different

n_clusters on the ZINC15 Database with 900,000 compounds.

Since the ZINC database is unlabeled, only the silhouette metric is calculated. More-

over, n_clusters range is increased to handle effectively the large size of the database.

However, due to the saturation after cluster size of 500, Figure 4.15 is clipped at that

point. Similar to other experiments, HAC results are negative, which indicates ineffi-

cient clustering. For k-means clustering, ChemBERTa descriptors score the highest,

though Chemprop descriptors are very close behind. Traditional ECFP4 descriptors

show poor results, which can mean that traditional methods aren’t scalable for large

datasets.

As shown in Table 4.12, our approach exhibits a high degree of scalability when

applied to large datasets while simultaneously providing clustering results and com-

putational efficiency. The computational efficiency of ChemBERTa learned descrip-

tors outperforms the Chemprop graph-based model because of the longer duration

required for descriptor calculation in the Chemprop model. Despite the relatively

slower running time of ChemBERTa compared to ECFP4, its higher silhouette score
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Table 4.12: The running time comparison of the end-to-end clustering pipeline for 3

descriptors using UMAP(16) dimensionality reduction on 900,000 compound subset

of ZINC15 database. Single running time refers to clustering analysis conducted

using a singular value of the hyperparameter, whereas total running time refers to

clustering analysis performed across a range of hyperparameter values.

Model Single Running Time Total Running Time

ChemBERTa 2m 45s 3h 36m

Chemprop 5m 15s 5h 10m

ECFP4 2m 30s 3h 7m

makes it a viable alternative to conventional methodologies. Moreover, the compre-

hensive comparison of running time percentages for each step can be seen in Ta-

ble 4.13. It is evident that the calculation of descriptors serves as the crucial factor in

distinguishing among the three descriptors.

Table 4.13: The running time percentages for each step of the end-to-end clustering

for each descriptors on ZINC 15 database

Model Calculate Descriptors Clustering Evaluation

ChemBERTa 10 85 5

Chemprop 25 70 5

ECFP4 8 87 5
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 CONCLUSION AND DISCUSSION

This thesis addresses the difficulties brought on by the huge variety of possible drug

candidates in the field of drug discovery. The main goal was to use a compound clus-

tering strategy to reduce the resource and time-intensive nature of laboratory testing.

The work effectively collected compound descriptors using ChemBERTa, a BERT-

based model, allowing for the future use of clustering techniques. Notably, the ef-

fectiveness of the suggested methodology was shown by the use of several clustering

algorithms, such as k-means and Butina. The learned compound descriptors of the

ChemBERTa model are shown to create accurate and effective compound groups, as

seen by the examination of the resulting clusters using metrics like Silhouette Score.

These results highlight the potential of ChemBERTa descriptors to accelerate com-

pound grouping while improving its precision, opening up a possible path for ad-

vancing early drug discovery efforts.

The methodology employed in our study demonstrates a notable level of scalabil-

ity when implemented on extensive datasets, while concurrently delivering clustering

outcomes and computational efficacy. Furthermore, the utilization of a BERT-based

model in our method enables the effective utilization of extensive and unlabeled

datasets for the compound clustering task. Our findings demonstrate that utilizing

a pre-trained model on a substantial dataset of 77 million SMILES yields compara-

ble results to conventional fingerprint methodologies in terms of performance. This

would potentially enable models trained with greater datasets to surpass traditional

approaches in performance across all tasks.
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5.2 FUTURE WORK

• A larger pre-trained model can be used for learned compound descriptors since

pre-training size generally affects the model accuracy as stated in [21, 22]. An

example model is MoLFormer [70], which is pre-trained on 1,1 billion com-

pounds from the ZINC database. It outperforms its counterpart models in the

BACE task of the MoleculeNet benchmark dataset.

• Instead of SMILES, SELFIES notation of the compounds can be used based

on the intuition from the SELFORMER model [22]. Although the authors of

the ChemBERTa-2 paper made experiments with SELFIES instead of SMILES

and found no significant boost in the model performance [21], the result of

the SELFORMER paper shows the opposite. The SELFORMER model out-

performs both the ChemBERTa-2 model and other graph-based models like

chemprop on most of the MoleculeNet classification tasks. As a future study,

the learned descriptors of SELFORMER model can be extracted and used for

compound clustering.
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A.1 Figures of Clustering Results on 6 Protein Families Dataset

Figure .1: Silhouette scores of Butina using UMAP(16) with different threshold on

the 6 Protein Families Dataset

Figure .2: ARI values of Butina using UMAP(16) with different threshold on the 6

Protein Families Dataset
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Figure .3: Silhouette scores of HDBSCAN using UMAP(16) with different

min_cluster_size on the 6 Protein Families Dataset

Figure .4: ARI values of HDBSCAN using UMAP(16) with different

min_cluster_size on the 6 Protein Families Dataset
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B.2 Figures of Clustering Results on Chembl_27 Dataset

B.2.1 Abl1

Figure .5: Silhouette scores of Butina clustering for 3 descriptors with different

threshold on the Chembl_27 ABL1 Dataset

Figure .6: Silhouette scores of HDBSCAN for 3 descriptors with different

min_cluster_size on the Chembl_27 ABL1 Dataset
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B.2.2 Renin

Figure .7: Silhouette scores of k-means and HAC for 3 descriptors with different

n_clusters on the Chembl_27 Renin Dataset

Figure .8: Silhouette scores of Butina clustering for 3 descriptors with different

threshold on the Chembl_27 Renin Dataset
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Figure .9: Silhouette scores of HDBSCAN for 3 descriptors with different

min_cluster_size on the Chembl_27 Renin Dataset

B.2.3 Thb

Figure .10: Silhouette scores of k-means and HAC for 3 descriptors with different

n_clusters on the Chembl_27 THB Dataset
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Figure .11: Silhouette scores of Butina clustering for 3 descriptors with different

threshold on the Chembl_27 THB Dataset

Figure .12: Silhouette scores of HDBSCAN for 3 descriptors with different

min_cluster_size on the Chembl_27 THB Dataset
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C.3 Figures of Clustering Results on DUD-E Dataset

C.3.1 Abl1

Figure .13: Silhouette scores of Butina clustering for 3 descriptors with different

threshold on the DUD-E ABL1 Dataset

Figure .14: Silhouette scores of HDBSCAN for 3 descriptors with different

min_cluster_size on the DUD-E ABL1 Dataset
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C.3.2 Renin

Figure .15: Silhouette scores of k-means and HAC for 3 descriptors with different

n_clusters on the DUD-E Renin Dataset

Figure .16: Silhouette scores of Butina clustering for 3 descriptors with different

threshold on the DUD-E Renin Dataset
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Figure .17: Silhouette scores of HDBSCAN for 3 descriptors with different

min_cluster_size on the DUD-E Renin Dataset

C.3.3 Thb

Figure .18: Silhouette scores of k-means and HAC for 3 descriptors with different

n_clusters on the DUD-E THB Dataset
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Figure .19: Silhouette scores of Butina clustering for 3 descriptors with different

threshold on the DUD-E THB Dataset

Figure .20: Silhouette scores of HDBSCAN for 3 descriptors with different

min_cluster_size on the DUD-E THB Dataset
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D.4 Figures of Clustering Results on ZINC Dataset

Figure .21: Silhouette scores of HDBSCAN for 3 descriptors with different

min_cluster_size on the ZINC15 Database with 900,000 compounds.
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